04. Dezember 2020
Online-Meldung

Wie heiß ist zu heiß für das Leben tief unter dem Ozeanboden?

Publikation in Science: Internationales Team erforscht die Grenzen des Lebens
Tiefsee-Bohrschiff Chikyu (Foto: JAMSTEC)

Ab wann wird es zu heiß unter dem Meeresgrund, so dass mikrobielles Leben nicht mehr möglich ist? Diese Frage steht im Fokus einer engen wissenschaftlichen Zusammenarbeit zwischen der Japan Agency for Marine‐Earth Science and Technology (JAMSTEC) und dem MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen. Eine Expedition im Rahmen des Bohrprogramms IODP (International Ocean Discovery Program) im Jahr 2016, an der auch eine AWI-Wissenschaftlerin teilgenommen hat, hat neue Erkenntnisse zu den Temperaturgrenzen des Lebens unter dem Ozeanboden geliefert. Die Ergebnisse hat das internationale Team jetzt im Wissenschaftsjournal Science veröffentlicht.

Sedimente, die tief unter dem Ozeanboden liegen, sind ein harscher Lebensraum. Temperatur und Druck steigen mit der Tiefe beständig an, während das Energieangebot immer knapper wird. Dass Mikroorganismen den Meeresboden dennoch bis in mehrere Kilometer Tiefe besiedeln, ist erst seit etwa 30 Jahren bekannt. Die tiefe Biosphäre ist noch wenig erforscht und wirft grundsätzliche Fragen auf: Wo liegen die Grenzen des Lebens, und wodurch werden sie bestimmt? Ein Faktor könnte die Umgebungstemperatur sein. Thermophile (wärmeliebende) Mikroorganismen können gut bei bis zu 80 Grad Celsius existieren. Des Weiteren gibt es sogenannte hyperthermophile Bakterien und Archaeen, die sogar noch höhere Temperaturen bevorzugen, aber eine hohe Energiezufuhr zum Erhalt ihrer Zellen benötigen – unter idealen Bedingungen im Labor halten sie kurzfristig sogar 122 Grad Celsius aus. Doch um zu erforschen, wie sich hohe Temperaturen langfristig auf das Leben in der energiearmen tiefen Biosphäre auswirken, sind aufwändige Tiefseebohrungen nötig. „Nur wenige wissenschaftliche Bohrungen haben bisher Tiefen erreicht, in denen die Sedimente heißer sind als 30 Grad Celsius“, erklärt Studienleiter Prof. Kai-Uwe Hinrichs vom MARUM, „daher war es das Ziel der T-Limit-Expedition, mit einer kilometertiefen Bohrung in bis zu 120 Grad Celsius heißen Sedimenten wissenschaftliches Neuland zu erkunden – und das ist uns gelungen.“

Weltweit einmalige Bohrlokation

Ähnlich wie die Suche nach Leben im Weltall ist die Erforschung der Grenzen des Lebens auf der Erde mit großen technischen Herausforderungen verbunden. Temperaturen von 120 Grad Celsius sind in der Regel etwa 4.000 Meter unter dem Meeresboden vorzufinden. Es gibt für die Wissenschaft weltweit nur eine Möglichkeit, um Proben aus solchen Tiefen zu gewinnen: das wissenschaftliche Tiefsee-Bohrschiff Chikyu. Um die Bohrung zu vereinfachen, wurde eine Lokation im Nankai-Graben vor Japan ausgewählt. Zwar liegt dieser Probenahmeort in 4,8 Kilometer Wassertiefe, doch durch den hier überdurchschnittlich steilen geothermischen Gradienten konnten 120 Grad Celsius mit einer nur 1.180 Meter tiefen Bohrung erreicht werden. „Erstaunlicherweise bricht die mikrobielle Populationsdichte bereits bei einer Temperatur von rund 45 Grad ein“, sagt Co-Expeditionsleiter Dr. Fumio Inagaki von JAMSTEC. „Es ist faszinierend – im heißen Ozeanboden gibt es ausgedehnte scheinbar nahezu leblose Tiefenintervalle. Und dann konnten wir in tieferen, noch wärmeren Zonen wieder Zellen sowie mikrobielle Aktivität nachweisen – bis zu einer Temperatur von 120 Grad.“

Während die Konzentration der vegetativen Zellen stark abnimmt und sich bei über 50 Grad Celsius auf einem niedrigen Niveau von weniger als 100 Zellen pro Kubikzentimeter Sediment bewegt, steigt die Konzentration von Endosporen rapide an und erreicht ein Maximum bei 85 Grad Celsius. Endosporen sind ruhende Zellen bestimmter Bakterienarten, die wieder reaktiviert und in den Lebendmodus wechseln können, sobald es die Umstände zulassen. „Einige Spezialisten können sich an diese schwierigen Bedingungen anpassen und sind in der Lage, über geologische Zeiträume in einer Art Tiefschlaf zu verharren“, ergänzt Inagaki.

Verbesserte Nachweisverfahren

Ein Großteil der Forschung im Rahmen dieses Projekts fand am Rande des technisch Machbaren statt. „Innerhalb der letzten zwanzig Jahre konnten viele Nachweisverfahren deutlich verbessert werden, teils sind sie nun hunderttausendmal empfindlicher“, erklärt Co-Expeditionsleiter Dr. Yuki Morono von JAMSTEC. Um das in den über 50 Grad Celsius heißen Sedimenten nur spärlich vorhandene mikrobielle Leben sicher nachweisen zu können, ist es entscheidend, Verunreinigungen zu vermeiden. Daher wurde das Bearbeiten der Proben durch strenge Kontaminationskontrollen überwacht, und für besonders kritische Arbeiten wurden Proben per Helikopter in die Reinstraumlabore des IODP-Bohrkernlagers in Kochi, Japan, gebracht. „Ohne einen Teil der Forschung an Land durchzuführen, in einer qualitativ hochwertigen und kontrollierbaren Forschungsumgebung, wäre das Ziel der Expedition nicht erreichbar gewesen“, so Morono, der während der Expedition die Forschung an Land leitete.

Internationale Zusammenarbeit

„Die Ergebnisse unserer Expedition sind überraschend. Sie zeigen, dass am unteren Rand der Biosphäre tödliche Grenzen und Überlebenschancen dicht beieinander liegen. Das hatten wir so nicht erwartet“, sagt Co-Expeditionsleiterin Dr. Verena Heuer vom MARUM, „und dieser Erkenntnisgewinn wäre ohne das starke interdisziplinäre Team und seine engagierte Zusammenarbeit nicht möglich gewesen.“ An dem nun veröffentlichten Artikel haben 43 Autorinnen und Autoren aus 29 Instituten zusammen gearbeitet, insgesamt waren Menschen aus neun Nationen beteiligt. Die Studie wurde durch Expedition 370 im Rahmen des internationalen Ozeanbohrprogramms IODP realisiert. Ein Ziel von IODP ist die Erforschung der tiefen Biosphäre. „Mit jeder Expedition werden technische und analytische Methoden weiterentwickelt, jedes Mal kommen Menschen mit vielfältigen Erfahrungen und neuen Ideen zusammen, um gemeinsam eine wissenschaftliche Frage zu beantworten“, ergänzt Heuer, „und das macht die Faszination aus. So öffnet jede Bohrung ein Fenster zu neuen Erkenntnissen.“

Aus Bremen waren neben Verena Heuer und Kai-Uwe Hinrichs auch Bernhard Viehweger, Dr. Florence Schubotz, Dr. Rishi R. Adhikari, Jenny Wendt sowie Dr. Lars Wörmer bei der Expedition beziehungsweise den nachfolgenden wissenschaftlichen Auswertungen dabei. Vom Alfred-Wegener-Institut war Dr. Susann Henkel als Teil des Geochemie-Teams an Bord der Chikyu. Gemeinsam mit der Doktorandin Male Köster arbeitet sie nun an der Rolle der biologischen Eisenreduktion als lebenserhaltenden Prozess in der tiefen Biosphäre des Nankai-Grabens und der damit verbundenen Veränderungen der geochemischen sowie magnetischen Eigenschaften des Sediments. Die Erfassung dieser Überprägung ist wichtig, damit die Rekonstruktionen von Umweltbedingungen an der Lokation, die auf dieser Art von Daten basieren, verlässliche Ergebnisse liefern.

Die Erkenntnisse tragen auch zu den wissenschaftlichen Inhalten des Exzellenzclusters „Der Ozeanboden – unerforschte Schnittstelle der Erde“ bei, betont Kai-Uwe Hinrichs: „Diese Arbeit bedeutet einen wichtigen Fortschritt unserer Arbeiten im Exzellenzcluster, in dem wir die Faktoren ermitteln wollen, die die räumliche Ausdehnung der tiefen Biosphäre im Untergrund des Ozeanbodens kontrollieren.“

 

Originalpublikation:

Verena B. Heuer, Fumio Inagaki, Yuki Morono, Yusuke Kubo, Arthur J. Spivack, Bernhard Viehweger, Tina Treude, Felix Beulig, Florence Schubotz, Satoshi Tonai, Stephen A. Bowden, Margaret Cramm, Susann Henkel, Takehiro Hirose, Kira Homola, Tatsuhiko Hoshino, Akira Ijiri, Hiroyuki Imachi, Nana Kamiya, Masanori Kaneko, Lorenzo Lagostina, Hayley Manners, Harry‐Luke McClelland, Kyle Metcalfe, Natsumi Okutsu, Donald Pan, Maija J. Raudsepp, Justine Sauvage, Man‐Yin Tsang, David T. Wang, Emily Whitaker, Yuzuru Yamamoto, Kiho Yang, Lena Maeda, Rishi R. Adhikari, Clemens Glombitza, Yohei Hamada, Jens Kallmeyer, Jenny Wendt, Lars Wörmer, Yasuhiro Yamada, Masataka Kinoshita, Kai‐Uwe Hinrichs:

Temperature limits to deep subseafloor life in the Nankai Trough subduction zone. Science 2020. DOI: 10.1126/science.abd7934

Originalpublikation

Originalpublikation:

Verena B. Heuer, Fumio Inagaki, Yuki Morono, Yusuke Kubo, Arthur J. Spivack, Bernhard Viehweger, Tina Treude, Felix Beulig, Florence Schubotz, Satoshi Tonai, Stephen A. Bowden, Margaret Cramm, Susann Henkel, Takehiro Hirose, Kira Homola, Tatsuhiko Hoshino, Akira Ijiri, Hiroyuki Imachi, Nana Kamiya, Masanori Kaneko, Lorenzo Lagostina, Hayley Manners, Harry‐Luke McClelland, Kyle Metcalfe, Natsumi Okutsu, Donald Pan, Maija J. Raudsepp, Justine Sauvage, Man‐Yin Tsang, David T. Wang, Emily Whitaker, Yuzuru Yamamoto, Kiho Yang, Lena Maeda, Rishi R. Adhikari, Clemens Glombitza, Yohei Hamada, Jens Kallmeyer, Jenny Wendt, Lars Wörmer, Yasuhiro Yamada, Masataka Kinoshita, Kai‐Uwe Hinrichs:

Temperature limits to deep subseafloor life in the Nankai Trough subduction zone. Science 2020. DOI: 10.1126/science.abd7934

Kontakt

Wissenschaft

Susann Henkel
+49(471)4831-2324

MARUM Wissenschaft

Prof. Dr. Kai-Uwe Hinrichs
Organische Geochemie
E-Mail: khinrichs@marum.de

Dr. Verena Heuer
Organische Geochemie
E-Mail: vheuer@marum.de

MARUM Presse

Jana Nitsch

0421 218 65541

E-Mail: medien@marum.de