Publications

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung et al., 2017: DEPAS (Deutscher Geräte-Pool für amphibische Seismologie): German Instrument Pool for Amphibian Seismology, doi: 10.17815/jlsrf-3-165

Almendros et al.,: BRAVOSEIS: Geophysical investigation of rifting and volcanism in the Bransfield strait, Antarctica, doi: 10.1016/j.jsames.2020.102834

Altenbernd et al., 2014: A crustal model for northern Melville Bay, Baffin Bay, doi: 10.1002/2014JB011559

Altenbernd et al., 2015: Geophysical evidence for the extent of crustal types and the type of margin along a profile in the northeastern Baffin Bay, doi: 10.1002/2015JB012307

Altenbernd et al., 2016: Insights into the crustal structure of the transition between Nares Strait and Baffin Bay, doi: 10.1016/j.tecto.2016.04.001

Altenbernd et al., 2020: The bent prolongation of the 85°E Ridge south of 5°N – Fact or fiction?, doi: 10.1016/j.tecto.2020.228457

Altenbernd-Lang et al., 2022: Distribution of oceanic crust in the Enderby Basin offshore East Antarctica, doi: 10.1093/gji/ggac299

Altenbernd-Lang et al., 2022: Wide-angle seismic transect reveals the crustal structure of(f) southern Sri Lanka, doi: 10.1016/j.tecto.2022.229358

Barruol et al., 2020: Large-scale flow of Indian Ocean asthenosphere driven by Réunion plume, doi: 10.1038/s41561-019-0479-3

Bie et al., 2022: Imaging slab-transported fluids and their deep dehydration from seismic velocity tomography in the Lesser Antilles subduction zone, doi: 10.1016/j.epsl.2022.117535

Bonadio et al., 2018: Hot upper mantle beneath the Tristan da Cunha hotspot from probabilistic Rayleigh-wave inversion and petrological modeling, doi: 10.1002/2017GC007347

Bouffaut et al., 2018: Passive stochastic matched filter for Antarctic blue whale call detection, doi: 10.1121/1.5050520

Braszus et al., 2021: Subduction history of the Caribbean from upper-mantle seismic imaging and plate reconstruction, doi: 10.1038/s41467-021-24413-0

Brotzer et al., 2022: Geophysical insights on the crustal structure of Greenland’s northern continental margin towards the Morris Jesup Spur, doi: 10.1016/j.tecto.2022.229588

Chichester et al., 2020: Seafloor sediment thickness beneath the VoiLA broad-band ocean-bottom seismometer deployment in the Lesser Antilles from P-to-S delay times, doi: 10.1093/gji/ggaa360

Cooper et al., 2020: Variable water input controls evolution of the Lesser Antilles volcanic arc, doi: 10.1038/s41586-020-2407-5

Corela et al., 2017: Ambient seismic noise tomography of SW Iberia integrating seafloor- and land-based data, doi: 10.1016/j.tecto.2017.02.012

Corela et al., 2023: The effect of deep ocean currents on ocean- bottom seismometers records, doi: 10.5194/nhess-23-1433-2023

Czuba et al., 2011: Continent-ocean-transition across a trans-tensional margin segment: off Bear Island, Barents Sea, doi: 10.1111/j.1365-246X.2010.04873.x

Dannowski et al., 2020: Seismic evidence for failed rifting in the Ligurian Basin, Western Alpine domain, doi: 10.5194/se-11-873-2020

Davy et al., 2014: Tracking major storms from microseismic and hydroacoustic observations on the seafloor, doi: 10.1002/2014GL062319

Davy et al., 2020: Wide‐Angle Seismic Imaging of Two Modes of Crustal Accretion in Mature Atlantic Ocean Crust, doi: 10.1029/2019JB019100

Dessa et al., 2011: The GROSMarin experiment: three dimensional crustal structure of the North Ligurian margin from refraction tomography and preliminary analysis of microseismic measurements, Bull. Soc. géol. France, 182.

Essing et al., 2021: Characteristics of Current-Induced Harmonic Tremor Signals in Ocean-Bottom Seismometer Records, doi: 10.1785/0220200397

Geissler et al., 2010: Focal mechanisms for sub-crustal earthquakes in the Gulf of Cadiz from a dense OBS deployment, doi: 10.1029/2010GL044289

Geissler et al., 2016: Thickness of the oceanic crust, the lithosphere, and the mantle transition zone in the vicinity of the Tristan da Cunha hot spot estimated from ocean-bottom and ocean-island seismometer receiver functions, doi: 10.1016/j.tecto.2016.12.013

Gohl et al., 2013: Seismic stratigraphic record of the Amundsen Sea Embayment shelf from pre-glacial to recent times: Evidence for a dynamic West Antarctic ice sheet, doi: 10.1016/j.margeo.2013.06.011

Grevemeyer et al., 2013: Micro-seismicity of the Mid-Atlantic Ridge at 7°S to 8°15’S and at the Logatchev Massif core complex at 14°40’N to 14°50’N, doi: 10.1002/ggge.20197

Grevemeyer et al., 2015: Seismicity and active tectonics in the Alboran Sea, Western Mediterranean: Constraints from an offshore-onshore seismological network and swath bathymetry data, doi: 10.1002/2015JB012073

Grevemeyer et al., 2016: Mantle earthquakes beneath the South Iberia continental margin and Gulf of Cadiz – constraints from an onshore-offshore seismological network, doi: 10.1016/j.jog.2016.06.001

Grevemeyer, 2020: Upper Mantle Structure beneath the Mid-Atlantic Ridge from Regional Waveform Modeling, doi: 10.1785/0120190080

Hable et al., 2018: Clock errors in land and ocean bottom seismograms: high-accuracy estimates from multiple-component noise cross-correlations, doi: 10.1093/gji/ggy236

Hable et al., 2019: Tomography of crust and lithosphere in the western Indian Ocean from noise cross-correlations of land and ocean bottom seismometers, doi: 10.1093/gji/ggz333

Hannemann et al., 2013: Measuring of clock drift rates and static time offsets of ocean bottom stations by means of ambient noise, doi: 10.1093/gji/ggt434

Hannemann et al., 2016: Oceanic lithospheric S-wave velocities from the analysis of P-wave polarization at the ocean floor, doi: 10.1093/gji/ggw342

Hannemann et al., 2017: Structure of the oceanic lithosphere and upper mantle north of the Gloria fault in the eastern mid-Atlantic by receiver function analysis, doi: 10.1002/2016JB013582

Hannemann et al., 2022: Seismic scattering and absorption of oceanic lithospheric S waves in the Eastern North Atlantic, doi: 10.1093/gji/ggab493

Harmon et al., 2021: Widespread hydration of the back arc and the link to variable hydration of the incoming plate in the Lesser Antilles from Rayleigh wave imaging, doi: 10.1029/2021GC009707

Harris et al., 2013: Applying distance sampling to fin whale calls recorded by single seismic instruments in the northeast Atlantic, doi: 10.1121/1.4821207

Hauser et al, 2011: A probabilistic seismic model for the European Arctic, doi: 10.1029/2010JB007889

Hermann and Jokat, 2013: Crustal structures of the Boreas Basin and the Knipovich Ridge, North Atlantic, doi: 10.1093/gji/ggt048

Hermann and Jokat, 2016: Crustal structure off Kong Oscar Fjord, East Greenland: Evidence for focused melt supply along the Jan Mayen Fracture Zone, doi: 10.1016/j.tecto.2015.12.005

Hicks et al., 2023: Slab to back-arc to arc: Fluid and melt pathways through the mantle wedge beneath the Lesser Antilles, doi: 10.1126/sciadv.add2143

Jokat et al., 2012: Crustal thickness and earthquake distribution south of the Logachev Seamount, Knipovich Ridge, doi: 10.1029/2012GL051199

Jokat and Hagen, 2017: Crustal structure of the Agulhas Ridge (South Atlantic Ocean): Formation above a hotspot?, doi: 10.1016/j.tecto.2016.08.011

Jokat and Reents, 2017: Hotspot volcanism in the southern South Atlantic: Geophysical constraints on the evolution of the southern Walvis Ridge and the Discovery Seamounts, doi: 10.1016/j.tecto.2016.12.011

Jokat et al., 2021: The early drift of the Indian plate, doi: 10.1038/s41598-021-90172-z

Kalberg and Gohl, 2014: The crustal structure and tectonic development of the continental margin of the Amundsen Sea Embayment, West Antarctica: implications from geophysical data, doi: 10.1093/gji/ggu118

Komeazi et al., 2023: Mantle Anisotropy in NW Namibia From XKS Splitting: Effects of Asthenospheric Flow, Lithospheric Structures, and Magmatic Underplating, doi:  10.1029/2022GL102119

Kopp et al., 2011: Deep structure of the central Lesser Antilles Island Arc: relevance for the formation of continental crust, doi: 10.1016/j.epsl.2011.01.024

Krüger et al., 2020: Mapping of Eastern North Atlantic Ocean seismicity from Po/So observations at a mid-aperture seismological broad-band deep sea array, doi: 10.1093/gji/ggaa054

Laigle et al., 2013: Seismic structure and activity of the north-central Lesser Antilles subduction zone from an integrated approach: Similarities with the Tohoku forearc, doi: 10.1016/j.tecto.2013.05.043

Lbadaoui et al., 2012: Body waves tomography from OBS-recorded earthquakes in the Gulf of Cadiz, Int. Rev. Phys., 6, 232-240.

Le Pape and Bean, 2021: North Atlantic Oscillation (NAO) Climate Index Hidden in Ocean Generated Secondary Microseisms, doi: 10.1029/2021GL093657

Li et al., 2021: Back-Arc Extension of the Central Bransfield Basin Induced by Ridge–Trench Collision: Implications From Ambient Noise Tomography and Stress Field Inversion, doi: 10.1029/2021GL095032

Libak et al., 2012: An integrated geophysical study of Vestbakken Volcanic Province, western Barents Sea continental margin, and adjacent oceanic crust, doi: 10.1007/s11001-012-9155-3

Lindner et al., 2016: Seafloor Ground Rotation Observations: Potential for Improving Signal‐to‐Noise Ratio on Horizontal OBS Components, doi: 10.1785/0220160051

Lontsi et al, 2022: A Robust Workflow for Acquiring and Preprocessing Ambient Vibration Data from Small Aperture Ocean Bottom Seismometer Arrays to Extract Scholte and Love Waves Phase-Velocity Dispersion Curves, doi: 10.1007/s00024-021-02923-8

Mazzullo et al., 2017: Anisotropic tomography around Réunion Island from Rayleigh waves, doi: 10.1002/2017JB014354

Meier and Schlindwein, 2018: First in situ seismic record of spreading events at the ultraslow spreading Southwest Indian Ridge, doi: 10.1029/2018GL079928

Meier et al., 2021: Segment-Scale Seismicity of the Ultraslow Spreading Knipovich Ridge, doi: 10.1029/2020GC009375

Meier et al., 2022: Magmatic Activity and Dynamics of Melt Supply of Volcanic Centers of Ultraslow Spreading Ridges: Hints From Local Earthquake Tomography at the Knipovich Ridge, doi: 10.1029/2021GC010210

Monna et al., 2013: New insights from seismic tomography on the complex geodynamic evolution of two adjacent domains: Gulf of Cadiz and Alboran Sea, doi: 10.1029/2012JB009607

Moscoso and Grevemeyer, 2015: Bending-related faulting of the incoming oceanic plate and its effect on lithospheric hydration and seismicity: A passive and active seismological study offshore Maule, Chile, doi: 10.1016/j.jog.2015.06.007

Naranjo et al., 2024: Ocean bottom seismometer clock correction using ambient seismic noise, doi: 10.26443/seismica.v3i1.367

Nouibat et al., 2023: Ambient-Noise Wave-Equation Tomography of the Alps and Ligurian-Provence Basin, doi: 10.1029/2023JB026776

Pandey et al., 2022: Plume-lithosphere interaction beneath southwestern Africa – Insights from multi-mode Rayleigh wave tomography, doi: 10.1016/j.tecto.2022.229587

Parera-Portell et al., 2023: Slab Tearing Underneath the Bransfield Strait, Antarctica, doi: 10.1029/2023GL103813

Pereira et al., 2019: Fin whale acoustic presence and song characteristics in seas to the southwest of Portugal, doi: 10.1121/10.0001066

Pilot and Schlindwein, 2024: A Practical Approach to Automatic Earthquake Catalog Compilation in Local OBS Networks Using Deep-Learning and Network-Based Algorithms, doi: 10.1785/0220230182

Pirli et al., 2018: Seismicity along the Mohns—Knipovich Ridge Bend and its correlation to ridge spreading rate, doi: 10.1016/j.jog.2018.01.013

Pirli and Schweitzer, 2018: BARENTS16: a 1-D velocity model for the western Barents Sea, doi: 10.1007/s10950-017-9692-y

Riefstahl et al., 2020: Cretaceous intracontinental rifting at the southern Chatham Rise margin and initialisation of seafloor spreading between Zealandia and Antarctica, doi: 10.1016/j.tecto.2019.228298

Riefstahl et al., 2020: Extent and Cessation of the Mid-Cretaceous Hikurangi Plateau Underthrusting: Impact on Global Plate Tectonics and the Submarine Chatham Rise, doi: doi.org/10.1029/2020JB019681

Ruiz et al., 2013: Seismic activity offshore Martinique and Dominica islands (Central Lesser Antilles subduction zone) from temporary onshore and offshore seismic networks, doi: 10.1016/j.tecto.2011.08.006

Ryberg et al., 2017: Uppermost mantle and crustal structure at Tristan da Cunha derived from ambient seismic noise, doi: 10.1016/j.epsl.2017.04.049

Ryberg et al., 2022: Crustal and uppermost mantle structure of the NW Namibia continental margin and the Walvis Ridge derived from ambient seismic noise, doi: 10.1093/gji/ggac084

Schlaphorst et al., 2021: Variation in upper plate crustal and lithospheric mantle structure in the Greater and Lesser Antilles from ambient noise tomography, doi: 10.1029/2021GC009800

Schlindwein et al., 2013: Seismic gap beneath Logachev Seamount: Indicator for melt focusing at an ultraslow mid-ocean ridge?, doi: 10.1002/grl.50329

Schlindwein et al., 2014: Seismicity of the Arctic Mid-Ocean Ridge system, doi: 10.1016/j.polar.2014.10.001

Schlindwein and Schmid, 2016: Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere, doi: 10.1038/nature18277

Schlömer et al., 2017: Hunting for the Tristan mantle plume – An upper mantle tomography around the volcanic island of Tristan da Cunha, doi: 10.1016/j.epsl.2016.12.028

Schlömer et al., 2017: Seismicity in the vicinity of the Tristan da Cunha hotspot: Particular plate tectonics and mantle plume presence, doi: 10.1002/2017JB015017

Scholz et al., 2017: Orienting ocean-bottom seismometers from P-wave and Rayleigh wave polarizations, doi: 10.1093/gji/ggw426

Scholz et al., 2018: SKS splitting in the Western Indian Ocean from land and seafloor seismometers: Plume, plate and ridge signatures, doi: 10.1016/j.epsl.2018.06.033

Schmid and Schlindwein, 2016: Microearthquake activity, lithospheric structure, and deformation modes at an amagmatic ultraslow spreading Southwest Indian Ridge segment, doi: 10.1002/2016GC006271

Schmid et al., 2017: Magma plumbing system and seismicity of an active mid-ocean ridge volcano, doi: 10.1038/srep42949

Schweitzer et al., 2021: A 24‐Yr‐Long Seismic Bulletin for the European Arctic, doi: 10.1785/0220210018

Shynkarenko et al., 2021: Investigating the subsurface in a shallow water environment using array and single-station ambient vibration techniques, doi: 10.1093/gji/ggab314

Shynkarenko et al., 2023: On the seismic response and earthquake-triggered failures of subaqueous slopes in Swiss lakes, doi: 10.1093/gji/ggad240

Silva et al., 2017: Micro-seismicity in the Gulf of Cadiz: Is there a link between micro-seismicity, high magnitude earthquakes and active faults?, doi: 10.1016/j.tecto.2017.07.026

Stähler et al., 2016: Performance report of the RHUM-RUM ocean bottom seismometer network around La Réunion, western Indian Ocean, doi: 10.5194/adgeo-41-43-2016

Stähler et al., 2018: A Self‐Noise Model for the German DEPAS OBS Pool, doi: 10.1785/0220180056

Suckro et al., 2012, The crustal structure of southern Baffin Bay: implications from a seismic refraction experiment, doi: 10.1111/j.1365-246X.2012.05477.x

Thorwart et al., 2021: Basin inversion: reactivated rift structures in the central Ligurian Sea revealed using ocean bottom seismometers. doi: 10.5194/se-12-2553-2021

Trabattoni et al., 2020: Orienting and locating ocean-bottom seismometers from ship noise analysis, doi: 10.1093/gji/ggz519

Tsekhmistrenko et al., 2021: A tree of Indo-African mantle plumes imaged by seismic tomography, doi: 10.1038/s41561-021-00762-9

Wamba et al., 2021: Multi-mode waveform tomography of the Indian Ocean upper and mid-mantle around the Réunion hotspot, doi: 10.1029/2020JB021490

Weemstra et al., 2021: Systematic recovery of instrumental timing and phase errors using interferometric surface-waves retrieved from large-N seismic arrays, doi: 10.1093/gji/ggaa504

Wolf et al., 2021: 3D crustal structure of the Ligurian Basin revealed by surface wave tomography using ocean bottom seismometer data, doi: 10.5194/se-12-2597-2021

Zhang et al., 2022: Crustal and uppermost mantle structure beneath Tristan da Cunha using surface wave phase velocity from horizontal components OBS ambient seismic noise, doi: 10.1093/gji/ggac390

Zhang et al., 2023: Characteristics of the oceanic ambient seismic noise around Tristan da Cunha in the South Atlantic from OBS data, doi: 10.1029/2022JB025884