Data As­si­mi­la­ti­on in Dif­fe­rent Mo­dels of Com­ple­xi­ty for De­gla­cia­ti­on

Funding programm: Center for Marine Environmental Sciences at the University of Bremen (MARUM)
Funding identification number (FZK):
Cost (Kostenstelle): 
Project term:  - 
Antragstellern: Prof. Dr. Gerrit Lohmann Dr. Lars Nerger
PhD Candidate: Ahmadreza Masoum

 

Cli­ma­te and Earth sys­tem mo­dels are wi­de­ly used to eva­lua­te the im­pact of an­thro­po­ge­nic emis­si­ons on fu­ture cli­ma­te. The mo­dels are cle­ar­ly un­ri­va­led in their abili­ty to si­mu­la­te a broad ran­ge of lar­ge-sca­le pheno­me­na on sea­so­nal to de­ca­dal time sca­les. Howe­ver, the re­lia­bi­li­ty of mo­dels to si­mu­la­te cli­ma­te va­ria­bi­li­ty on mul­ti­de­ca­dal and lon­ger time sca­les re­qui­res ad­di­tio­nal eva­lua­ti­on. Cli­ma­te re­cor­ds de­ri­ved from pa­leo­en­vi­ron­men­tal pa­ra­me­ters fa­ci­li­ta­te the tes­ting of mo­dels out of the “com­fort zone of pre­sent-day cli­ma­te (Loh­mann et al., 2020).

The fun­da­men­tal idea be­hind pa­leo­cli­ma­te data as­si­mi­la­ti­on (PDA) is to cons­train a cli­ma­te mo­del tra­jec­to­ry using pro­xy data and an ob­ser­va­ti­on ope­ra­tor (e.g., a for­ward mo­del) and con­se­quent­ly op­ti­mal­ly esti­ma­te past cli­ma­te. It is also pos­si­ble to quan­ti­ta­tive­ly esti­ma­te un­cer­tain­ties of pro­xies and si­mu­la­ti­ons. Alt­hough the PDA and re­gu­lar data as­si­mi­la­ti­on root in the same sta­tis­ti­cal theo­ry, the PDA has some spe­ci­fic cha­rac­te­ris­tics. First, PDA ob­ser­va­tions, in­clu­ding pro­xies and pro­xy-ba­sed re­con­struc­tions, are time-aver­aged and con­ti­nuous in time. Se­cond, Long-term in­te­gra­ti­on is an im­portant fea­ture in PDA. The tar­get of PDA is to re­con­struct in­teran­nu­al, de­ca­dal or cen­ten­ni­al cli­ma­te chan­ge over hund­reds of ye­ars or lon­ger. The­re­fo­re, PDA re­qui­res high com­pu­ting per­for­mance and is more time con­su­ming than the re­gu­lar data as­si­mi­la­ti­on. Third, in­iti­al con­di­ti­ons have mi­nor im­pacts on the PDA re­sults be­cau­se the ef­fects of in­iti­al con­di­ti­ons will slow­ly at­te­nua­te in time due to the chao­tic na­tu­re of the at­mo­s­phe­re.

Con­side­ring the im­port­an­ce of cli­ma­te mo­dels with dif­fe­rent com­ple­xi­ty and ba­sed on the in­for­ma­ti­on above, this PhD pro­ject aims to ap­p­ly a sui­ta­ble En­sem­ble Kal­man Fil­ter (EnKF) data as­si­mi­la­ti­on me­thod (Kal­man, 1960; Ner­ger and Hil­ler, 2013) over the last 22ka ye­ars using three cli­ma­te sys­tem mo­dels of dif­fe­rent com­ple­xi­ty. In or­der to ob­tain this goal, the pro­ject is di­vi­ded into three pha­ses:
• Ap­p­ly­ing data as­si­mi­la­ti­on using a two-di­men­sio­nal en­er­gy ba­lan­ce mo­del for the last de­gla­cia­ti­on
• An earth sys­tem mo­del of in­ter­me­dia­te com­ple­xi­ty is em­ploy­ed using PDA to re­con­struct the last de­gla­cia­ti­on
• Run­ning a data as­si­mi­la­ti­on sys­tem using a cou­p­led ge­ne­ral cir­cu­la­ti­on mo­del for time sli­ces

In all pha­ses, pro­xy-ba­sed tem­pe­ra­tu­re data sets are used as ob­ser­va­tions in the PDA sys­tems. Mo­re­o­ver, the EnKF al­go­rithms will be exe­cu­ted uti­li­zing Par­al­lel Data As­si­mi­la­ti­on Frame­work (PDAF) (Ner­ger and Hill­ler, 2005).

(a) The δ18O ice core curve from the North Greenland Ice Core Project (North Greenland Ice Core Project members, 2004) documents climate variability over the last 120 kyr (purple). The black curve indicates the 21 June insolation at the local position (W m−2). (b) Annual mean insolation variation at all latitudes using the algorithm of Berger (1978). (c) CO2 forcing as reconstructed from the past (yellow) (Köhler et al., 2017) and estimated for future scenarios (Archer & Brovkin, 2008) for a moderate (1,000 Gt carbon) (blue) and large (5,000 Gt carbon) (red) fossil fuel slugs (the natural atmospheric CO2 content is on the order of 600 Gt carbon prior to anthropogenic combustion of carbon). For the translation into W m−2, we assume a 4 W m−2 for doubling of CO2 and a logarithmic dependence  with CO2 and CO  being the CO2 level and the reference preindustrial level, respectively.

More Informationen about the project PDA

References

Kal­man, R. E., 1960: A New Ap­proach to Li­ne­ar Fil­te­ring and Pre­dic­tion Pro­blems. ASME. J. Ba­sic Eng. 82(1), 35–45. https://doi.org/10.1115/1.3662552

Loh­mann, G., M. Butz­in, N. Eiss­ner, X. Shi, C. Ste­pa­n­ek, 2020: Ab­rupt cli­ma­te and wea­ther chan­ges across time­sca­les. Pa­leo­cea­no­gra­phy and Pa­leo­cli­ma­to­lo­gy 35 (9), e2019PA003782, DOI:10.1029/​2019PA003782, https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019PA003782

Ner­ger, L., W. Hil­ler, 2013: Soft­ware for En­sem­ble-ba­sed DA Sys­tems – Im­ple­men­ta­ti­on and Sca­la­bi­li­ty. Com­pu­ters and Geo­sci­en­ces 55 (2013) 110-118, https://www.sciencedirect.com/science/article/pii/S0098300412001215